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SUMMARY 

The Falkner-Skan equation f '"  + ff" + h(1 _ f ,2 )  = 0,f(0) =if(0)  = 0, is discussed for h < 0. Two types of 
problems, one with f'(**) = 1 and another with f'(**) = -- 1, are considered. For h = 0- a close relation 
between these two types is found. For h < -- 1 both types of problem allow multiple solutions which may be 
distinguished by an integer N denoting the number of zeros of f '  -- 1. The numerical results indicate that the 
solution branches with f'(*~) = 1 and those with f'(**) = -- 1 tend towards a common limit curve as N 
increases indefinitely. Finally a periodic solution, existing for ~. < -- 1, is presented. 

1. Introduction 

An important  class of  similarity solutions in boundary-layer theory is governed by the Falkner- 

Skan equation 

f" '  + i f "  + x(1 _ f ,2 )  = 0, (1) 

with the usual boundary conditions 

f(0) = f'(0) = 0, f'(~) = 1. (2) 

This equation has been introduced about half a century ago [1].  An account of  its physical 

significance is given by Schlichting [2].  Existence and uniqueness of  the solutions of  (1) 

+ (2) have been discussed in many papers. Therefore let us first give a summary of the results 

obtained previously. 

It has been shown that a unique solution exists for ~ > 0 under the additional requirement 

0 < f ' <  1 0 7 > 0 ) ,  (3) 

see for instance the monograph by Hartman [3].  In case of  0 < ~ < 1 the restriction (3) can 

be removed, as proved by Coppel [4] and Craven and Peletier [5].  For ~ > 1 numerical evi- 

dence, supplied by Craven and Peletier [6] ,  suggests that solutions of  (1) + (2) exist which do 

not satisfy (3). 

If ~. < 0 the situation is more complicated. It is known that there exists a number ~* = - 

0.1988 . . .  with the following properties. 
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(i) For X* < X < 0, a unique solution of (1) + (2) + (3) with f '  ~ 1 exponentially exists, but 
algebraically decaying solutions exist also; see Iglisch and Kemnitz [7] and Hartman [8]. 

(ii) For X* < X < 0 an additional, unique, exponentially decaying solution of (1) + (2) with 
if(O) < 0 exists. The existence and uniqueness of this reversed flow solution, first discussed 
by Stewartson [9], is proved by Hastings [10]. 

(iii) For h < X *  no solutions of ( 1 )+ (2 )  exist which satisfy (3). But Libby and Liu [11] 
have presented exponentially decaying solutions which exhibit overshoot, i.e. f ' >  1 for 
some r/. An existence proof of the Libby and Liu branches has recently been given by 
Troy [12]. 

A graphical presentation of these previously known branches for X < 0 is given in Figure 1. 
The Falkner-Skan equation has also been studied subject to a second set of boundary condi- 

tions, namely 

f ( o )  = f ' ( o )  = o ,  f , ( o o )  = - 1. (4) 

Already in 1954 Stewartson [9] mentioned solutions satisfying (4). From that time applica- 
tions have been presented by various authors [13-17] .  Goldstein [13] has given the first, 
heuristic, discussion of existence and uniqueness. A rigourous treatment can be found in Ten 
Raa, et al. [16], where for ;~ < 0 uniqueness is proved under the additional restriction f "  > 0. 
The latter restriction can be weakened as shown by Veldman and van de Vooren [18]. They 
proved existence and uniqueness of a solution of (1 )+  (4) with ~ ,<0  under a restriction 
similar to (3), viz. 

- 1 < f '  < 0 (n > 0). (5) 

• J ' I 
\, 

- 2  

f "  (0) 

\ 
\ 

A 

Figure 1. (h, f"(0)) -plane of solutions of the Falkner-Skan equation obtained by previous investigators. 



297 

Moreover the latter authors proved that for any solution of (1) + (4) the boundary condition 
at infinity is approached algebraically, i.e. as r/-~ oo 

f ' ( r l )  "" - -  1 + crl 2 x (c  > 0). 

Finally, Coppel [4] has proved that for ~, > 0 no solutions of (1) + (4) exist. 
It is the objective of this paper to present for ~, < 0 new solutions of (1) + (2) or (1) + (4) 

displaying a close relation between these two problems. Curves in the (~., i f (0))  -plane repre- 
senting either solutions of (1) + (2) or solutions of (1) + (4) will be studied. It is found that 
at X = 0 the curve corresponding to the solutions of (1) + (4) + (5) is tangent to the curve 
corresponding with the Stewartson solutions of (1) + (2). 

We will extend the Libby and Liu branches towards higher values of ~. Moreover the paper 
will show multiple solutions of (1)+ (4) with X < - 1  which do not satisfy (5). There is a 
definite possibility that the corresponding branches in the (~,, if(0))-plane, as well as the 
Libby and Liu branches, all start from a giant branching point B at ;~ = -  1 , f " ( 0 ) = -  1.0863 
. . . .  The latter value satisfies a transcendental equation containing a parabolic cylinder function. 
Finally for ~, < -- 1 periodic solutions of (1) will be presented. 

2. Reversed f l ow  solutions for ~ = 0 -  

The investigation reported here is an outgrowth of a study on interacting boundary layers 
exhibiting regions with reversed flow. To describe these regions by means of an integral method 
solutions corresponding with the Stewartson branch are required for values of X very close 
to zero [19]. 

An asymptotic theory describing these solutions has been presented by Brown and Stewartson 
[20]. At the time no numerical solutions with small enough values of--  X to check the asymp- 
totic theory were available. We will present the comparison between the asymptotic theory and 
the numerical results however. 

In short the asymptotic behaviour is as follows. Near the wall exists a region of size 
O (( -- X)- 1/4) where 

f ( r l ) ~ ( - - ? ~ ) X / 4 F ( Y ) ,  Y . ~ -  (--•)l/4n. (6a) 

F(Y) is the unique [21] solution of 

F " + F F "  = 1, F(O) = F ' ( O )  = O, (6b) 

which is negative for all values of Y >  0. Further fpossesses one zero at 7/= r/*, a large distance 
from the wall. Near r /=  r/* we have 

f(r/) ~ g(~'), ~" = 7/-- 7/*, (7a) 
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where g(~') represents a shear layer. This Chapman function g(~') satisfies 

g " + g g "  = 0, g ' ( - - o ~ )  = O, g(O) = 0, g'(oo) = 1. (7b) 

Matching (6a) and (7a) Brown and Stewartson [20] showed that 7/* approximately satisfies 

r/*( -- k) ~n [2 log (( --  k)~/%/*)] 1/2 = _ g ( _  oo) = 0.87575. (8) 

Further, solving (6b) one finds 

f " (O)  ~ ( -- X)a/4F"(O) = -- 1.54400 ( -- ;k) 3/' . (9) 

Table 1 gives a comparison between (8) and (9) and the numerical results of  Oskam [19].  

Taking into account that (8) predicts r/* with an error of  at least O ( ( -  ~)-1/4) and that (9) 

gives f " ( O )  with an error O ( ( -  X)7/4) [20] a perfect agreement is found between the asymp- 

totic theory and the numerical results. 

3. Solutions with f '  - * -  1 

Calculating solutions corresponding to the Stewartson branch we observed nearby lying solu- 

tions of  (1) + (4). Table 2 gives the value o f f " ( 0 )  of  the unique solution of  (1) + (4) + (5) 

for a range of X-values. Especially interesting is the behaviour of  f " (0 )  as X -* 0-. It is very 

much like the behaviour of  the Stewartson branch, as is apparent from the comparison with 

the asymptotic result (9) in Table 2. 

Indeed, as asymptotic analysis set up along the lines of  Brown and Stewartson [20],  i.e. 

X -* 0-,  leads to a wall region where the solution is governed by (6) again. Thus as X -* 0-  the 

Stewartson branch of  solutions of  (1) + (2) and the branch of  solutions o f ( l )  + (4) + (5) are 

closely related: they have the same asymptotic behaviour near the wall given by (6). 

In the other limit, as X - ~ - o o ,  the solution of  (1) + (4) + (5) can be related to an analy- 

tical solution. Let 

Table 1. A comparison of numerically obtained Falkner-Skan results with asymptotic theory for h ~ 0-. 

lim { , - f ( n ) }  x f " ( o )  ,~* 

-~ ~ present Eq. (9) present Eq. (8) 

400 -- 1.01638 E-6 -- 4.94244 E-5 -- 4.94244 E-5 
150 -- 9.50592 E-6 -- 2.64327 E-4 -- 2.64328 E-4 
50 -- 1.31696 E-4 -- 1.89795 E-3 -- 1.89813 E-3 
22 -- 1.19287 E-3 -- 9.79506 E-3 -- 9.91042 E-3 
10 - -  1.52636 E-2 -- 5.52648 E-2 -- 6.70486 E-2 

399.6 
149.6 
49.6 
21.6 
9.6 

387.7 
140.2 
43.5 
16.8 
5.9 
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Table 2. Behaviour off"(O) for Falkner-Skan solutions (N = 0) with f'(**) = -- 1, compared with asymptotic 
theories for ~. ~ 0- and for h . . . .  

X f"(0)  

present Eq. (9) Eq. (12) 

- -  0 . 0 0 0 1  

- -  0 . 0 0 1  

- -  0.01 
--0.1 
--0.2 
--0.6 
- -  1.0 
--1.2 
--1.6 
- -  2.0 
--5.0 

- -  10.0 
-- 50.0 

-- 100.00 

- - 0 . 0 0 1 5 4 3 9  

- - 0 . 0 0 8 6 7 6  

- -  0 . 0 4 8 4 8  

- -  0 . 2 5 7 5 2  

- -  0 . 4 1 1 1 3  

- -  0 . 8 1 2 0 2  

- -  1 . 0 8 6 3 8  

- -  1 . 2 0 1 5 0  

- -  1 . 4 0 4 5 7  

- -  1 . 5 8 2 3 0  

- -  2 . 5 4 9 1 1  

- - 3 . 6 2 8 0 5  

- -  8 . 1 5 4 4 3  

- -  1 1 . 5 3 9 5 5  

--0.0015440 
- -  0.008683 
- -  0.04883 
-- 0.27457 

--1.63299 
- -  2.58199 
- -  3.65148 
--8.16497 

-- 11.54701 

X = 2m/(m + 1), 

then f(s) satisfies 

r/ = [(m + 1)/2] 1/2s and f(r / )  = [(m + 1)/2] 1/2f(S) (10) 

f , , ,+ m + l f f , , + m ( 1  - - f ' 2 )  = 0, f ( 0 )  = f ' ( 0 )  = 0, 
2 

f ' ( o o )  = 1. (11) 

Taking m = - -  1 ÷, corresponding to X ~ - -  ~ ,  (11)  has the m o n o t o n i c  solut ion [2] 

f ' (s)  = - - 3 t a n h  2 (2-1/2S+So)+2, So = t a n h - l ( ] )  1/2, 

wi th  f "(0) = - (~)1/2. Thus,  assuming f "(0) to be a cont inuous  func t ion  o f  m for m = - 1 ÷, 

we have 

l im (--~)-1/2f"(0)= l im (_m)-,/2f,,(O) = _(~) , /2 .  
h ---~ - ** rn ---~ -- 1 + 

This implies that  for large values of  - - X  the solut ion o f  (1) + (4) + (5) satisfies 

f " ( 0 )  ~ - -  ( - 4X/3) 1/2. (12) 

The results in Table 2 conf i rm this behaviour.  
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4. A n  analyt ica l  so lu t ion  for  h = - 1 

If  X = --  1 a solution of  (1) + (4) can be calculated analytically. Two integrations o f ( l )  yield 

the Riccati equation 

f '  + ½f~ = nf"(O) + ½n ~. 

Introduction of  the new variables ~ = r / + f " ( 0 )  and f ( r / ) =  2 w ' ( ~ ) / w ( ~ ) l e a d s  to the Weber 

equation 

w"-(¼~ ~ + a)w = O, 

where a = -  ~f"(0)  2 . The general solution can be written in terms of  parabolic cylinder func- 

tions (Miller's notation will be used [22] ) 

w(~) = c~ u(a, ~) + c~ V(a, ~). 

As ~ ~ ~ ,  U(a, ~) is decreasing exponentially, but V(a, ~) is increasing exponentially. Thus, if 

c2 :/: 0, w(~) is an exponentially increasing function. As discussed by Yang and Chien [23] and 
Moulden [24],  this corresponds to f '  ~ 1 as r / ~  ~ - .  However, in both studies the case c2 = 0 

has been overlooked. As is easily verified this case corresponds to f '  -+ - 1. Moreover, as we will 

see in the next section, it will play a central role in the solutions of  (1) + (2). 

Having chosen c2 = 0, the still unknown value of f " (O)  can be found by imposing the 

boundary conditions on f a t  7? = 0. This gives the transcendental equation 

U' (a , f " (O) )  = O, a = - ¼f"(O) 2 . (13)  

Using the formulas and tables given in [22] it can be verified that the value f " ( 0 )  = -- 1.08638, 

obtained in Table 2, satisfies this equation. An analytical proof  that this is the only solution 

of (13)has  not been found yet. 

5. Multiple solutions for ~ < - 1 

In 1966 Libby and Liu [11] presented exponentially decaying solutions of  ( 1 ) + ( 2 )  for 

~. < - 1. These solutions do not satisfy (3) as they possess regions where f '  > 1. Recently, 

Troy [12] has shown that there is a sequence of branches of  solutions such that f '  --  1 has 
precisely N zeros for each natural number N; however, Troy did not indicate where one may 

find these solutions in the (X, f " (0 ) )  -plane. 
Libby and Liu [11] already conjectured that their first branch (one zero o f f '  --  1 ,N  = 1) 

begins at ?~ = -- 1, f " ( 0 )  ~ --  1.09. This branch ends with a vertical asymptote at ;~ = --  2, 
as f " ( 0 ) - - * ~ ;  see also Steinheuer [25]. We have extended this branch of solutions towards 
~, = --  1. Some corresponding velocity profiles f '  are presented in Figure 2. Numerical values of  
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f " (0 )  may be found in Table 3. An extrapolation of  the results from the three largest values of  

;k gives an estimate of  - 1.0864 for f " (0 )  at X = - 1. Comparing this value with the analytical 

solution for ;k = - 1 from the previous section suggests that at the point B = ( -- 1, -- 1.08638) 

the first Libby and Liu branch coincides with the branch of  solutions with f '  ~ -  1. However, 

due to the limited word length of  computers, we cannot isolate the Libby and Liu solution 

for ~ arbitrarily close to - 1, because the problem is ill-posed for ~ ~- -- 1. 

The ill-posedness manifests itself even stronger if one intends to find the origin of  the second 

and subsequent branches of Libby and Liu. They have pursued the second branch up to ~ 

- 1.95. In Table 3 we give some results for X up to -- 1.2. Note that at ;k = -- 1.2,.f"(0) differs 

less than 5.10 -s from the value o f f " ( 0 )  of  the solution with f '  ~ -  1 (Table 2). 

For ;k = -  2 we have made a systematic search for other Libby and Liu branches. Several 

of  them were found. The first five have been isolated; the corresponding values o f f " ( 0 )  are 

given in Table 4. Note that f " (0 )  is a decreasing function of  the number of  zeros o f f ' -  1. 

Velocity profiles are shown in Figure 3. 

During this search at ;~ = -- 2 we also encountered solutions of (1) + (4) which do not 

satisfy (5). Like the Libby and Liu solutions they exhibit overshoot. Some velocity profiles 

are given in Figure 4; the corresponding values of  f " (0 )  may be found in Table 4. It is noted 

10 

/ 

/ 

\ 
I 
-1 

f 

.~ =-1.0014 

19.5 

j~=-1.012 

I I I I 1,~ 
5 

Figure 2. Falkner-Skan s o l u t i o n s  o n  the first Libby and L i u  b r a n c h  n e a r  h = -- 1 (N = , f  ( ) = 1). 
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Table 3. Coordinates of the first two Libby and Liu branches. 

First branch (N = 1) Second branch (N = 2) 

x ["(o) x f"(o) 

--1.34742 0 - -2  --1.46100 
--1.26855 --0.72317 --1.92157 --1.47118 
--1.09221 --1.05508 --1.84615 --1.46611 
--1.02572 --1.09477 --1.70371 --1.43134 
--1.02115 --1.09482 --1.47826 --1.34149 
--1.00707 --1.09055 --1.33333 --1.27177 
--1.00300 --1.08819 --1.25203 --1.22955 
--1.00143 --1.08724 --1.20000 --1.20146 

15 

f t t  (0)=-1.570695 (N=5) 

-1.570615 (N=4) 

-1.565931 (N=3) 

--1.460998 (N=2) 

I 
I 
I 
I 

• 1 

Figure 3. Falkner-Skan solutions on the 

I 

I 
! 

, I I I _ 

0 1 2 3 ft 

second through fifth Libby and Liu branch for ;~ = --  2 ( f ' (= )  = 1). 
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1 2 3 f~ 
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Figure 4. Falkner-Skan solutions for h = -- 2 (f'(**) = -- 1), N = 0, 2, 4. 

Table 4. VMues o f f ( 0 )  of some Fa~ner-Skan solut~ns for h = -- 2. 

f ' (~ )  number of zeros o f f '  -- 1 

N = 0  1 2 3 4 5 

+ 1 -- ~ --1.46100 --1.56593 --1.57061 --1.57070 
- -  1 -- 1.58230 -- -- 1.57071 -- -- 1.57070 -- 

that  f " ( 0 )  of  the solut ions with f ' (oo) = - 1 is an increasing funct ion  of  the number  of  zeros 

of  f '  - -  1. Fur ther  the regular s tructure of  the newly found  oscillating solutions is worth men- 

t ioning.  The ' humps '  in the velocity profile all have about  the same size and shape. We consider 

it l ikely that  this can be related to the existence of  a periodic solut ion of  (1); the lat ter  will 

be discussed in the next  section. 

At other values of  X < - 1 the same behaviour has been found.  However, for - -  1 < X < 0 

no sign could be found of  solut ions other than the ones already ment ioned .  Thus,  it seems that 

for X < - 1 a complicated branching process occurs, see Figure 5. A more complete  picture of  

the branching process is given in Figure 6, where the scaling from (10) has been used. The 

solut ion branches with f ' (oo) = - -  1 for N = 2, 4 . . . .  are lying very close together (see Figure 5). 

For  increasing N a l imit curve is approached,  which on the scale of  Figure 6 cannot  be distin- 

guished from the branch with N = 2. Figure 6 further shows the first seven Libby and Liu 

branches.  For  increasing X ( <  --  1) these branches,  with f ' (o~) = 1, are seen to converge to the 

l imit curve men t ioned  above on which f ' ( o o )  = - -  1 .  
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Figure 5. Falkner-Skan branches for 7, < 0. 
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6. Periodic solutions for X < --  1 

The regular structure of  the newly found oscillating solutions suggests the existence of a periodic 
solution of the Falkner-Skan equation. Indeed, for X < --  1 we have found numerical evidence 
of such a periodic solution, with period rip > 0, which satisfies 

f ( o )  = f " (o)  = f ( n p )  = / " ( r i p )  = o; (14) 

moreover, f is antisymmetric with respect to rl = ½ rip. Figure 7 shows some periodic solutions. 

A few quantities corresponding with these numerical solutions can be found in Table 5, together 
with some asymptotic results for ~. -+ --  1-, to be described next. For k -+ --  1- an asymptotic 

description in terms of  e = --  1 --  k can be formulated. As e -~ 0 the velocity profile f '  is close 

to --  1 except for a thin shear layer around r / =  ½ rip where f '  attains its maximum. Let the 

thickness of  the shear layer be e q, q > 0. The presence of  the factor k in the Falkner-Skan 

equation suggests that the asymptotic expansion of  f inside the shear layer proceeds in integer 

powers of  e. Further, as the viscous term f "  is likely to play an important role, the asymptotic 

expansion in the shear layer is chosen as 

.f(n) = e -~ { 8 ( o )  + e & ( O  + o(e=)} ,  05) 

where o = e -q ( r / - -  ~ rip). The functions F1 and F= satisfy 

F," + F , F , " + F ,  '~ = o, (16a) 

&'"  + F~F=" + 2F~'F=' + F~"F= = - - F  '= 1 • (16b) 

rl 

5 

4 

f 

t 3 

# 

- 1  0 1 2 

= - 1 . 2  

I I i 
4 6 8 

Figure 7. Periodic solutions of the Falkner-Skan equation; half a period is shown. 
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Table 5. Properties of the periodic Falkner-Skan solution, compared with asymptotic theory for h --* -- 1-. 

h period ~p /max 

numerical Eq. (20) numerical Eq. (19) 

--1.00030 200.06 199.99 5001.4 
--1.00300 63.47 63.21 501.6 
--1.03030 20.69 19.90 51.62 
--1.09981 12.32 10.96 17.15 
-- 1.2 9.53 7.75 9.62 
--2.0 5.90 3.46 3.59 
--6.0 3.389 2.331 

--18.0 1.983 2.098 
--48.0 1.221 2.035 

--198.0 0.603 2.007 

4999.50 
499.50 

49.50 
15.03 
7.50 
1.50 

The odd solution of  (16a) we are interested in is given by 

Fx (a) = C tanh (½ Co), (17) 

where C is still arbitrary. Since F~' ( - -o o) = 0, it cannot be matched to the outer region where 

f '  ~ - 1. But as we will show next, F2' can be matched. Hereto we have to choose q = ½, as is 

apparent from (15). Also C can be determined. Restricting ourselves to odd solutions (16b) 

can be integrated to 

F2" + F, F~' + F,'& = -- f ~'F'2do. (18) 

Requiring F2' ( - -oo)  = -- 1 and F2"(--oo) = 0, we can derive from (17) and (18) 

C = f:Fl '2do = v f f .  

Combining (15) and (17) it follows that the maximum value o f f '  asymptotically satisfies 

f L a x ~ ½ C 2 e - 1  = 2 a ( - - 1 - - k )  -1. (19) 

Finally, by matching Fx (--~o) with f in the outer region, which approximately equals --r/ ,  

the period r/p is found to behave as 

rip ~ 2Ce -1/2 = 2x/~'( -- 1 --  k) -x/2. (20) 

A comparison between the asymptotes (19) and (20) and the numerical results is presented in 

Table 5 as mentioned before; the agreement found confirms the asymptotic behaviour. 

Also in the other limit, k ~ -  oo, the periodic solution can be pursued. Its limiting form is 

given by 



f ' ( s )  = 2 - - 3  tanh 2 12-1/2s l, 

where the notat ion from (10) has been used. 
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7. Concluding remarks 

In this paper solutions of  the Falkner-Skan equation satisfying either f ' ( o o ) =  1 (exp.) or 

f ' (oo) = --  1 are discussed. It is shown that for 3  ̀~ 0-  these two families of  solutions are closely 

related, because the first terms in the two asymptotic expansions o f f " ( 0 )  as 3  ̀~ 0-  are the 

same. For  3  ̀< --  1 the two types of problems both allow multiple solutions: 

(i) The solutions with f '(~o) = --  1 are distinguished by N, the number of zeros o f f ' - -  1, which 

takes the values 0, 2, 4 , . . . .  The branches with N > 2 are found to lie very close together, 

suggesting the existence of a limit curve of  solution branches with f'(oo) = --  1 as N increases 

indefinitely (Figure 6). 

(ii) The multiple solutions with f ' ( ~ )  = 1 may be distinguished also by the number N,  which 

now takes the values 1 ,2 ,  3 . . . . .  The first seven of  these Libby and Liu branches have been 

continued to larger values of  ?~. We have found all these branches to converge to the limit 

curve of  solutions with f ' (oo) = --  1 for sufficiently large 3, <: --  1. 

From these numerical results it is observed that the branching structure is dominated by the 

point B = ( - -  1, - -  1.08638). Due to the ill-posedness of  this problem as mentioned earlier 

no precise structure of this branching process has been found. There is a definite possibility 

that B is one giant branching point from which all branches start. Such a structure would suggest 

the existence of  a limit curve representing the branch of solutions which oscillate infinitely 

many times. This limit curve, which extends form 3  ̀= - 1 to 3  ̀= - 0 %  would then separate the 

solutions with f '(oo) = 1 from those with f ' (oo) = --  1. In favour of  the existence of such a l imit  

curve is the observation of  periodic solutions for 3  ̀< -  1. Further analysis would be appro- 

priate if one intends to reveal the precise structure of  this branching process. 
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